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The linear hydrodynamic stability problem for plane Poiseuille flow of a diluBe 
suspension of rigid fibres is solved numerically. The constitutive equation given by 
Batchelor (1970a, b,  1971) is used to model the rheological properties of the suspension. 
The resulting eigenvalue problem is shown to be singular. The appropriate contour 
in the complex plane is determined by considering aa initial-value problem. It is 
shown that, for a fixed, but not too large, inclination of the wave front to the mean 
flow, the fibres cause the critical Reynolds number to increase monotonically with 
the product of the volume fraction of the fibres and the square of their aspect ratio. 
The stabilizing influence of the fibres seems to vanish for large wave inclination angles. 

1. Introduction 
There are several reasons for studying the fluid mechanics of fibre suspensions. Flows 

of such suspensions are common in industrial applications, e.g. in chemical and pulp 
engineering. Furthermore, it is known that addition of small amounts of certain fibres 
to  a fluid may reduce its drag in turbulent flows (Hoyt 1 9 7 2 ~ ;  Vaseleski & Metzner 
1974). As is well known, a similar effect can be obtained by addition of certain long- 
chain polymer molecules (Virk 1975). It has been speculated whether the polymer 
molecules in a drag-reducing Auid are uncoiled into long threads by the turbulent 
straining field, whereby their hydrodynamic effect would be similar to that of suspended 
fibres (Landahl 1972; Lumley 1972; Landahl & Bark 1974; Batchelor 1976). Know- 
ledge of the hydrodynamic properties of fibre suspensions may thus, in some cases, 
also be applicable to the rheologically far mme complex polymer solutions. 

In  this paper the linear hydrodynamic stability problem for a plane Poiseuille flow 
of a dilute suspension of rigid fibres is solved. The constitutive equation derived by 
Batchelor (1970a, b,  1971) is used to model the rheological properties of the suspension. 
It should be pointed out that the present work is not an attempt to explain turbulent 
drag reduction due to fibre additives, but is merely intended to shed some light on 
the general hydrodynamic stability properties of fibre suspensions as such. To study 
the effect of fibre additives on turbulent flows, one should instead investigate the 
Kelvin-Helmholtz type of instability, which presumably is a crucial mechanism in 
the turbulent bursting process (Kim, Kline & Reynolds 1971). A two-dimensional 
stability problem of this kind was studied by Landahl & Bark (1974), who found that 
such instabilities are suppressed by fibre additives, if the rheology of the suspension 
is modelled according to Batchelor (1970a, b,  1971). A visual study by Pilipsson, 
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Lagerstedt & Bark (1977) of jets in a liquid a t  rest, which is a flow susceptible to 
Kelvin-Helmholtz instability, showed the same trend as the theoretical results given 
by Landahl & Bark (1974) if fibres were added to the fluid in the jet. The same effect 
for polymers was found by Gadd (1965). This indicates that the hydrodynamic effects 
of the fibres in this flow were similar to those of the polymers. 

As far as transition from laminar to  turbulent flow is concerned, results from the 
kind of calculations presented in the present work should be interpreted with care. 
It is known that the final stage of transition involves rapidly growing small-scale 
motions superposed on a rather slowly growing and nonlinearly distorted Tollmien- 
Schlichting wave. This has been observed both for the Blasius boundary layer 
(Klebanoff, Tidstrom 8: Sargent 1962) and for plane Poiseuille flow (Nishioka, Iida 
& Ichikawa 1975). However, the presence of a slowly growing Tollmien-Schlichting 
wave of the kind calculated in this work seems to be a prerequisite for transition to 
take place. 

There are no experimental data available on transition in a plane Poiseuille flow 
of a fibre suspension. For Poiseuille flow in a pipe, it was shown by Vaseleski & Metzner 
(1974) that the Reynolds number for transition for a suspension containing very 
slender asbestos fibres may be significantly larger than that for the Newtonian solvent. 
Although the processes causing transition in plane and axisymmetric Poiseuille flow 
are presumably qualitatively similar, several points regarding this matter remain to 
be resolved (Sarpkaya 1975). It should also be pointed out that some experiments have 
shown that transition occurs a t  a higher Reynolds number in pipe flow of certain 
polymer solutions if the polymer molecules have a comparatively large molecular 
weight, and therefore a comparatively large reIaxat,ion time (Hoyt 19723). A large 
relaxation t.ime will decrease the resistance of the molecule to being straightened out 
by the flow. One may thus speculate whether polymer molecules have the same effect 
as fibres in these cases also. In most cases, however, polymer additives do not affect 
the transition Reynolds number. 

Using another rheological model for a fibre suspension, Gyr (1977) solved the same 
problem as is treated in the present work. It seems to us that the rheological model 
used by Gyr (see Henkel & Gyr 1977) is somewhat oversimplified. However, Gyr’s 
results show the same trend as ours. 

The mathematical formulation of the stability problem is given in $ 2. It is shown 
that the resulting equation is singular at  the critical layer, i.e. at the point in the 
flow where the phase speed of a neutrally stable perturbation wave is the same as the 
mean velocity. The structure of this singularity and its mathematical consequences 
are discussed in $3 .  In $4 ,  the numerical method used is briefly described. The 
stability boundaries computed are presented in $ 5. 

2. Statement of the problem 
The problem to be considered is the linear hydrodynamic stability of a steady 

parallel flow of a dilute suspension of rigid fibres between two infinitely large parallel 
walls. To model the rheological properties of the suspension, the constitutive equation 
given by Batchelor (1970a, b, 1971) will be used. In  this model, the direction of the 
suspended fibres is described by a vector field p(x, t ) ,  where x is the position vector and 
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t is the time. The stress tensor, in Cartesian co-ordinates, is given in terms of the 
vector field p(x, t )  and the velocity field v(x, t )  by 

where dkl = $('k,l + ' 1 ,  k )  (2.2) 

is the rate-of-deformation tensor, ,u the dynamic shear viscosity of the Newtonian 
solvent, @ the volume fraction of the suspended particles and r their aspect ratio. The 
first term in ( 2 . 1 )  is the contribution to the stress from the solvent and the second 
term gives the contribution from the suspended fibres. In  asbestos-fibre suspensions, 
the aspect ratio r may be very large. Estimated values as large as lo4 have been 
reported for certain fibres (Rosinger, Woodhams & Chaffey 1974). This means that 
the non-dimensional parameter 

B = @r2/(ln 2r - 8)) ( 2 . 3 )  

which enters the pwt of the stress tensor due to the fibres [see (2.1)], may well be of 
order unity or larger even if the volume fraction @ is small. This means that, in some 
flows, the stress caused by the fibres can dominate the usua.1 viscous stress in the 
solvent even in dilute suspensions. There is experimental evidence for this in nearly 
irrotational flows (Mewis & Metzner 1974; Kizior & Seyer 1974). It should be pointed 
out, though, that the assumption of rigid fibres may not be a very good one for asbestos 
fibres. There is also a very large spread of fibre lengths in commercial asbestos-fibre 
samples. The assumption of small fibres, which is implicitly made when using (2.1), 
may therefore be questionable in some cases. 

The vector field p can be calculated in terms of the velocity field v from the following 
set of ecluations: 

(2.4n) 

p k p k  = '9 (2.4b) 

where Wkl = h('k,1-'1,k) (2.5) 

is the rotation-rate tensor. Equation (2.4b) ensures that the lengths of the fibres remain 
constant. Having specified the constitutive equation for the suspension, its motion 
can be calculated from the momentum equation 

P('k, t + ' m  ' k , m )  = - =, k + tlk,l,  (2.6) 

' k ,k  = 0. (2.7) 

2)k = 0 for x2 = 0,2L, ( 2 . 8 )  

where p is the density of the solvent and 7~ the pressure, and the continuity equation 

The calculated velocity field must satisfy the no-slip condition at the plates, i.e. 

where it has been assumed that the x2 direction is perpendicular to the plates and that 
the plates are at  x2 = 0 and x2 = 2 L ,  respectively. The flow, whose linear stability 
is to be studied, is assumed to be driven by a constant pressure gradient in the x1 
direction. If one assumes that the resulting flow is a parallel shear flow, one can show 

(2.9) 
from ( 2 . 4 ~ )  that 

pk = 8kl ,  
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which means that the fibres are all aligned in the direction of the mean flow. It can 
also be shown that, if their direction is given by (2.9)) the suspended fibres have no 
dynamical effect at all. The resulting flow is thus a standard Poiseuille flow of the 
form 

(2.10) 

where U, is the centre-line velocity. For notational convenience, in what follows vUk 
will be written as 

From here on it is assumed that all quantities are non-dimensionalized by L (lengths), 
U, (velocities), LIU, (times) and pug (pressures and stresses per unit area). 

In  order to study the linear stability of the flow given by (2.10)) the dependent 
variables are decomposed into a part of order unity and a small perturbation according 
to 

(2.12a) vk = u ( x 2 )  vA(xr, t ) ,  

7~ = - 2 x J R  + d(xr, t ) ,  (2.12 b )  

Pk = +Pi(rr, t ) )  (2.12c) 

tkm = ( 2 / R )  ( l  -22) (6k ,6 ,2+6k,6 ,1)+t ; , (2r ) t ) )  (2.12d) 

where R = PUoLIP (2.13) 

is the Reynolds number and the perturbation quantities are denoted by primes. 
These primes are dropped in what follows, since no confusion will arise thereby. 

It can be shown from (2 .4a)  that, for the type of mean flow given by (2.11)) to 
first order in the perturbation amplitude the only non-zero perturbation component 
of the vector field p is p 2 ,  which is to be calculated from 

P2,t + UP2,l = v2.1. (2.14) 

It then follows from (2.14) and (2.1) that the only perturbation stress caused by the 
suspended fibres is a normal stress in the x1 direction. The perturbation stress tensor 
can; after some algebra, be calculated as 

(2.15) 

For simplicity, the following changes in notation are made : 

(v1, v2, 213) -+ (u, v, w), ( X l , X 2 ,  4 -+ (x, Y, 2). ( 2 . 1 6 ~ )  b )  

As in %he classical theory of linear hydrodynamic stability (Lin 19551, the eventual 
exponential growth in time of a wave disturbance will be studied. The perturbation 
quantities are therefore assumed to be of the form 

(a, v, w, n , p 2 )  = (a, 6, &, G, fjz) exp @(ax + pz - act)), (2.17) 

where variables with a caret depend on y only. 01 and p are the wavenumbers in the x 
and z directions, respectively, and c is the phase speed in the x direction. In this work 
it will be assumed that a: and p are real. The phase speed c will, in general, be complex 
and the sign of its imaginary part cI will determine the stability of the flow. 
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Substituting ( 2 . 1 7 ~ )  into (2.14)) (2.15) and (2.6)) (2.7) gives the following set of 

( 2 . 1 8 ~ )  

ia (U-c)&+(DU)O = -iaG+R-1(D2-k2)&+BR-l(@2DU+iai2), (2.18b) 

(2.1 8 c) 

(2.18d) 

(2.18e) 

where D = d / d y ,  k2 = a2+P2. (2.19a, b )  

Equations (2.18a-e) are to be solved subject to  

equations: 
i a (U-c )$ ,  = iaO, 

ia( U - c )  fi = - DG + R-l(D2 - k2) 0, 

ia( U - c) 8 = - iP$ + R-l(D2 - k2) u?, 

ia2 + DO +iP8 = 0, 

& = 6 = 8 = 0  for y = O , 2 .  (2.20) 

If a, P, B and R are given, (2.18a-e) and (2.20) define an eigenvalue problem for c. 
If 8 is non-zero at  the point in the complex y plane where U = c ,  which will be called 
ye, the system of equations ( 2 . 1 8 ~ - e )  will have a singular point a t  y = yc, as can be 
seen from (2.18a, b) .  It will be shown below that O(y,,) is non-zero. This singularity 
means that, for a real yc,  the tilting of the fibres will be infinite a t  y = yc. This results 
from adiscrepancy in the constitutive equation used, which in principle can be removed 
by including some diffusive mechanism in (2 .4a) ,  which describes the motion of the 
fibres in a given velocity field. However, there is a t  present no physically realistic 
way of incorporating such effects (E. J. Hinch, private communication). Note that 
singularities of this kind also appear in t'he linear stability problem for an inviscid 
fluid (Lin 1955, chap. 8) .  The mathematical consequences of the singularity in the 
present case will be discussed in somewhat more detail in the next section. 

By introducing the transformation (Squire 1933) 

ii = (a& +j38) / k ,  6 = (Pa - a & ) / k ,  (2.21a, b )  

one can, after some algebra, derive from ( 2 . 1 8 ~ ~ - e )  the following set of equations for 
ii, O and $1 

(2.22a) 

( u  - c )  $+- i ( 0 2 -  k2) 

CtR 

ikii+Dil = 0, 
which are to be solved subject to 

(2.22c) 

O = 0, 6 = ( i l k )  DO = 0 for y = 0,2, ( 2 . 2 3 ~ )  6 )  

w = -  - ik [ ~ D 5 0 + ( U - c - x - I c p R  i2k2 ia3B) D30 
a 3 P B ( U - e )  aR 

+ DU ( 1  + Rs) 0 2 0 1  = 0 for y = 0,2,  ( 2 . 2 3 ~ )  

where 
i aP2B k2 
R( k2 

e = c + -  - (2.23 d )  
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Kote that ( 2 . 2 3 ~ )  has no meaning for B = 0. The possibility that the factor ( U  - e)-1 
in ( 2 . 2 3 ~ )  is infinite will be discussed in the next section. It should also be noted that .iT, 

appears in ( 2 . 2 2 ~ ) .  This is not the case in the corresponding stability problem for a 
Il'ewtonian fluid (B  = 0) ,  which leads to an ordinary differential equation of fourth 
order in y. In the present case, it  appears that there is no linear transformation of the 
velocity components which gives a differential equation of order lower than six. For 
a fibre suspension modelled according to  (2.1) and (2.4a., b ) ,  there is thus no Squire 
theorem (Squire 1933)  which reduces 3 three-dimensional stability problem to a 
two-dimensional one. 

3. Structure of the mathematical problem 
With some labour, one can derive from ( 2 . 2 2 a ,  b )  a sixth-order equation for 6: 

6 

n=O 
2 a,D@-n)D = 0, 

where the coefficients a,, axe of the form 

"0 = 1, a1 = g,(y)/(U-e), a2 = g,(y), ( 3 . 2  U-C)  

a, = g,(y)/(U-e) ( U - C ) , - ~ ,  k = 3 ,  ..., 6. ( 3 . 2 d )  

The functions g, appearing in (3 .2b-d)  are analytic functions of y. These functions 
are rather complicated and are given in the appendix. The algebra was checked by 
deriving ( 3 . 1 )  both by hand and by using the REDUCE system (Hearn 1971)  for 
aut.omatic symbolic manipulation on a computer. There are obviously two singular 
p0int.s in ( 3 . 1 ) .  These occur at  values of y such that U = e ,  where e is defined by 
( 2 . 2 3 d ) ,  and U = c respectively. In the neighbourhood of the point y = ye, where ye 
is defined by U(yJ = e ,  one can show that ( 3 . 1 )  has six regular, linearly independent 
so1utions.t The proof of this is somewhat lengthy and is therefore not reproduced here. 

Near y = yc, a straightforward Frobenius expansion in terms of the variable 

t = y - y ,  ( 3 . 3 )  

gives the following behaviour of the six linearly independent solutions: 

iv a1 = p - 0  + - g( ' -~ )+O(p-~ ) ) )  1 = 1,  ..., 5 ,  
7 - 1  

( 3 . 4 a )  

where v = ak2RBU,/(k4+a2/32B), ( 3 . 4 c )  

Dn.Ei, = DnC(y),=,c, n = 1,2 .  ( 3 . 4 d )  

Logaribhmic terms will also appear to higher order in ( 3 . 4 a ) .  Because of the presence 
of logarithmic terms in ( 3 . 4 a ,  b ) ,  one must decide how to choose the proper path of 
integration in the complex y plane. The same kind of problem was resolved by Lin 
(1 955,  chap. 8 )  in his treatment of the linear hydrodynamic stability problem for an 

t The authors are obliged to  Professor L.  N. Howard for the proof of this. 
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inviscid fluid. Lin determined the proper path by comparing the singular inviscid 
solution with the asymptotic limit, for vanishing viscosity, of the solution to the 
corresponding viscous problem. As was discussed in the previous section, this procedure 
can not be carried out in the present problem. It should be pointed out, however, that 
we are implicitly assuming that in reality there are mechanisms, presumably of a 
diffusive nature, preventing the unphysical behaviour of the suspension which 
emerges as a mathematical result when the constitutive equation given by (2.1) and 
(2.4a, b) is used for the present problem. Such mechanisms, which should be weak 
everywhere except near yc, are, unfortunately, absent from ( 2 . 4 ~ ) .  

One may alternatively determine the correct path of integration by considering 
an initial-value problem in which all disturbances are zero before a specified time. 
This was done for an inviscid fluid by Dikii (1 960). In that case, it  was shown that the 
proper path in the complex y plane passes below the point y = yc if 

DU, > 0 for yc real (3.5~) 

and above if DU, < 0 for yc real. (3.5b) 

Inequalities (3.5a, b) were, of course, also obtained by Lin (1955, chap. 8). If neither 
(3.5~) nor (3.5b) is satisfied, the initial-value problem cannot be posed. Because the 
mathematical structure of the solution near y = yc in the problem dealt with by Dikii 
(1960) is essentially of the same kind as in the present problem, it is easily shown that 
the rules (3.5a, b) must be used for the present problem as well. These rules can be 
trivially extended to complex yc. The proper path of integration is thus determined. 

Owing to the algebraic complexity of (3.1), no analytic solutions could be found and 
numerical integration had to be used. Before presenting some results, a few details 
about the numerical procedure used will be given. 

4. Numerical procedure 
In  order to calculate the stability boundary, i.e. the wavenumbers a and /3 for 

which cI = 0, for given values of B and R, one may in principle integrate (3.1) along 
the real y axis for amplified waves and extrapolate the results to cr = 0. This has 
been clone in two-dimensional calculations of Kelvin-Helmholtz instability of a fibre 
suspension (Landahl & Bark 1974). For this kind of instability the real and imaginary 
parts of the phase speed, cR and c, respectively, are of the same order of magnitude, 
which, in practice, turns out to  be necessary for extrapolation toc, = 0 to give accurate 
results. However, for Poiseuille flow c, is much smaller than cR and extrapolation 
does not work. In  order to be able to  calculate neutrally stable waves, the path of 
integration was deformed into the lower half of the complex y plane. The contour 
used was a circular arc, crossing the real axis a t  y = 0 and y = 1. 

The numerical integration scheme used was a fourth-order Runge-Kutta scheme. 
ForP = 0, onecanshowthattwoofthesolutionsof(2.22a, b) haveamoderatevariation 
and that the other two grow rapidly as y approaches either of the walls. For j3 $. 0, 
there are two moderately varying solutions and four rapidly growing ones. To suppress 
merging of the rapidly growing solutions with the slowly growing ones during the 
numerical integration, the method of orthonormalization (Godunov 1961) was used. 

Owing to the rather complex algebraic structure of (3.1), some extensive testing of 
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the computer program was carried o u t  in order to  eliminate algebraic errors as much 
as possible. The program was tested in the following ways. 

(i) The numerical solution was compared with the exact one for U = 1. 
(ii) A separate program was written in which (2.18 a--4) were integrated as a system. 

The results were then compared with those obtained by integration of (3.1). 
(iii) Another separate program was written, in which the adjoint problem to (3.1) 

was solved. The eigenvalues of the adjoint problem were then compared with those 
obtained from (3.1). 

In  these tests three-digit agreement was obtained in all cases. The eigenvalues for 
,8 = 0, which are to  be computed from a fourth-order equation [cf. (2.220)], were 
computed by using a separate program. 

Some extensive numerical experiments were carried out using different step lengths 
and different circular arcs with the same end points. The step length was halved until 
no change in the first four digits of the eigenvalue could be detected. The first four 
digits of the eigenvalues were found to be the same for diff'erent arcs. 

5. Results and discussion 
Some neutral-stability curves are shown in figures 1 and 2 for the most unstable 

wave mode. This mode is symmetric with respect to  the centre of the channel. In  eacA 
of these figures, the angle 8 between the wave front and the direction af the mean flow, 
defined by 

8 = asctan(P/a), (5.1) 

is kept constant. The diagrams show the streamwise wavenumber a of the neutrally 
stable wave as a function of R for different values of B. Note that the R axis is displaced 
to the left for the highest values of 6. 

For 6 = in, the fibres are stabilizing in the sense that the critical Reynolds number 
is increased. The stabilizing effect, for a fixed 6, is monotone in B. For the non-zero 
values of B shown in figures 1 (a )  and (b) ,  however, the critical Reynolds number is 
decreased for the higher value of 8, while the opposite is true for the Newtonian case 
B = 0. As can be seen from figures 1 (c) and 2, the effect of the fibres disappears for 
8 2 +n. This result is also illustrated in table 1, where some points of neutral stability 
in the a, R plane are shown for various values of B and 8 = &T. Results for other 
velocity profiles, to be published elsewhere, showed that the merging of the neutral- 
stability curves shown in figure 2 does not occur in general and is presumably due to 
some specific property of the mean velocity profile investigated in this work. 

Figures 3 ( a )  and ( b )  show the effect of the fibres on the complex phase speed as 
function of a for different fixed B, 8 and R. According to figure 3 (a), the fibres affect 
the real part of the phase speed very weakly. This was found to be the case for all 
eigenvalues computed in this investigation. Figure 3 ( b )  shows the monotone decrease 
in c, for increasing B and fixed values of 6 and R. 

For the sake of completeness, it may be of interest to have some information 
about the effect of the fibres on the higher wave modes, which €or the Newtonian case 
are more stable than the one discussed above. Figure 4 shows cr as function of B, for 
fixed a, ,8 and R, for the second least stable mode. This mode is antisymmebric with 
respect to the centre of the channel. As can be seen from figure 4, there is a feeble 
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I .o 

0.8 
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0.5 
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I 0 4  z x  1 0 4  3 x 1 0 4  
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1 I I I 
I 0 4  z x  1 0 4  3~ 1 0 4  

I I 
~~ 

I I t 

z x  1 0 4  4~ 1 0 4  6 x  lo4 
R 

FIQURE 1. Neutral-stability curves for (a) 8 = 0, ( b )  8 = &T and (c) 0 = @. 
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B 
0 

200 

400 

R 
73 500 

115000 

73 500 

115000 

73 600 

115000 

4 

0.08 18 
0.0936 
0.0695 
0.0953 

0.08 17 
0.0937 
0.0695 
0.0953 

0.0815 
0.0937 
0.0695 
0.0953 

TABLE 1.  Some points of neutral stability in the 
a, R plane for 0 = +%. 
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0.09 

0.08 
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0.01 

0.06 

0.05 

I I 
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I 1 

0.5 x 105 10’ 1 . 5 ~  105 2 x  105 
R 

FIGURE 2. Neutral-stability curves for 0 = $*, B = 0, 200, 400. 
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0.60 0.80 
a 

1 .oo 

FIQURE 3. (a) Phase velocity cR and ( b )  c, as function 
of a for /? = O.6a and R = 2 x lo6. 

0.030 - - 

0.028 - - 
- 
0 

I 

0.026 - - 

0.024 - - 
I I I I 

50 I00 150 200 
B 

FIQURE 4. c, as function of B for the next least stable 
made. a = 1.0, B = 0.6, R = 2 x 106. 



332 F .  H .  Bark and H .  Tinoco 

destabilization for small values of B but a strong stabilization for larger values of B. 
The destabilization can be regarded as insignificant and it seems likely that the fibres 
will stabilize higher modes as well. 

6. Conclusions 
The linear hydrodynamic stability problem for a plane Poiseuille flow of a fibre 

suspension, modelled according to Batchelor ( 1 9 7 0 ~ )  b,  1971), has been solved. For 
a fixed, but not too large, wave angle, the critical Reynolds number increases mono- 
tonically with the product of the volume fraction of the fibres and the square of their 
aspect ratio. For large wave angles, the stabilizing effect of the fibres disappears for 
the mean profile considered. 

The authors have benefited from some very fruitful discussions with Professor 
M&rten T. Landahl and Professor Louis N. Howard. 

Appendix. The functions gk 
The functions gk appearing in (3 .2  c-d) are given by 

g,(y) = - D [ J ,  

g,(y) = a-l[2(U - e )  + rl, 

g3(y) = ( U  - c )  u-l[( U - e )  (DU + bF) - rDU] ,  

g4(y) = (U-~)~a-~[(U-e){(U-e)(U-e+r)+a[3bDP-k2(U-~)+ak4] 
- (bqfd) ) -aDU{DU+bP}] ,  

g6(y) = ( U - ~ ) ~ a - ~ [ ( b F ) ( U - e ) ~ - D U { a [ 2 b D F - k 2 ( U - c ) - 0 2 U + a k 4 ] - ( b q f ~ ) )  

+ ( U  - e) (a(3bD2F - 2k2DU - 2D3U) - bq(1DU + fF)}] ,  

gs(y) = ( U  - c ) ~ u - ~  [( U - e) (a(bD3F - k2D2U - D4U) - bp(lD2U + f D F )  
+ (U  - e) (bDF - k2( U - c )  - D2U +ak4)} 

-DU{a(bD2F- k2DU-D3U)-bq( lDU+fF)) ] ,  

where 
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